- Given an integer n, return the number of trailing zeroes in n!.
- Note that n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1.
Input: n = 5
Output: 1
Explanation: 5! = 120, one trailing zero.
Example 3:Input: n = 0
Output: 0
Constraints:0 <= n <= 104
Follow up:
- Could you write a solution that works in logarithmic time complexity?
Java:
class Solution {
public int trailingZeroes(int n) {
int count = 0;
for (int i = 5; i <= n; i = i * 5) {
count = count + n/i;
}
return count;
}
}
Python:class Solution:
def trailingZeroes(self, n: int) -> int:
i,count = 5,0
while i <= n:
count += n//i
i *= 5
return count
No comments:
Post a Comment