- You are given four points A, B, C, and D in a 3-dimensional Cartesian coordinate system. You are required to print the angle between the plane made by the points A, B, C and B, C, D in degrees(not radians). Let the angle be PHI.
- Cos(PHI) = (X.Y)/|X||Y| where X = AB x BC and Y= BC x CD.
- Here, X.Y means the dot product of X and Y, and AB x BC means the cross product of vectors AB and BC. Also, AB = B - A.
Input Format:- One line of input containing the space-separated floating number values of the X, Y, and Z coordinates of a point.
Output Format:- Output the angle correct up to two decimal places.
Sample Input:
0 4 5
1 7 6
0 5 9
1 7 2
Sample Output:
class Points(object):
def __init__(self, x, y, z):
self.x=x
self.y=y
self.z=z
def __sub__(self, no):
return Points((self.x-no.x),(self.y-no.y),(self.z-no.z))
def dot(self, no):
return (self.x*no.x)+(self.y*no.y)+(self.z*no.z)
def cross(self, no):
return Points((self.y*no.z-self.z*no.y),(self.z*no.x-self.x*no.z),(self.x*no.y-self.y*no.x))
def absolute(self):
return pow((self.x ** 2 + self.y ** 2 + self.z ** 2), 0.5)
if __name__ == '__main__':
points = list()
for i in range(4):
a = list(map(float, input().split()))
points.append(a)
a, b, c, d = Points(*points[0]), Points(*points[1]), Points(*points[2]), Points(*points[3])
x = (b - a).cross(c - b)
y = (c - b).cross(d - c)
angle = math.acos(x.dot(y) / (x.absolute() * y.absolute()))
print("%.2f" % math.degrees(angle))
Disclaimer: The problem statement is given by hackerrank.com but the solution is generated by the Geek4Tutorial admin. If there is any concern regarding this post or website, please contact us using the contact form. Thank you!
No comments:
Post a Comment