The mean tool computes the arithmetic mean along the specified axis.
import numpy
my_array = numpy.array([ [1, 2], [3, 4] ])
print numpy.mean(my_array, axis = 0) #Output : [ 2. 3.]
print numpy.mean(my_array, axis = 1) #Output : [ 1.5 3.5]
print numpy.mean(my_array, axis = None) #Output : 2.5
print numpy.mean(my_array) #Output : 2.5
Var:
The var tool computes the arithmetic variance along the specified axis.
import numpy
my_array = numpy.array([ [1, 2], [3, 4] ])
print numpy.var(my_array, axis = 0) #Output : [ 1. 1.]
print numpy.var(my_array, axis = 1) #Output : [ 0.25 0.25]
print numpy.var(my_array, axis = None) #Output : 1.25
print numpy.var(my_array) #Output : 1.25
Std:
The std tool computes the arithmetic standard deviation along the specified axis.
import numpy
my_array = numpy.array([ [1, 2], [3, 4] ])
print numpy.std(my_array, axis = 0) #Output : [ 1. 1.]
print numpy.std(my_array, axis = 1) #Output : [ 0.5 0.5]
print numpy.std(my_array, axis = None) #Output : 1.11803398875
print numpy.std(my_array) #Output : 1.11803398875
Task:
You are given a 2-D array of size N x M.
Your task is to find:
- The mean along axis 1
- The var along axis 0
- The std along axis None
Input Format:
The first line contains the space-separated values of N and M.
The next N lines contain M space-separated integers.
Output Format:
- First, print the mean.
- Second, print the var.
- Third, print the std.
Sample Input:
2 2
1 2
3 4
Sample Output:
[ 1.5 3.5]
[ 1. 1.]
1.11803398875
Solution:
import numpy
array = []
n, m = map(int, input().split())
for _ in range(n):
array.append(list(map(int, input().split())))
array = numpy.array(array)
print(numpy.mean(array, axis=1))
print(numpy.var(array, axis=0))
print(round(numpy.std(array), 11))
Disclaimer: The problem statement is given by hackerrank.com but the solution is generated by the Geek4Tutorial admin. If there is any concern regarding this post or website, please contact us using the contact form. Thank you!
No comments:
Post a Comment