The tool min returns the minimum value along a given axis.
import numpy
my_array = numpy.array([[2, 5],
[3, 7],
[1, 3],
[4, 0]])
print numpy.min(my_array, axis = 0) #Output : [1 0]
print numpy.min(my_array, axis = 1) #Output : [2 3 1 0]
print numpy.min(my_array, axis = None) #Output : 0
print numpy.min(my_array) #Output : 0
Max:
The tool max returns the maximum value along a given axis.
import numpy
my_array = numpy.array([[2, 5],
[3, 7],
[1, 3],
[4, 0]])
print numpy.max(my_array, axis = 0) #Output : [4 7]
print numpy.max(my_array, axis = 1) #Output : [5 7 3 4]
print numpy.max(my_array, axis = None) #Output : 7
print numpy.max(my_array) #Output : 7
Task:
You are given a 2-D array with dimensions N x M.
Your task is to perform the min function over axis 1 and then find the max of that.
Input Format:
The first line of input contains the space-separated values of N and M.
The next N lines contain M space-separated integers.
Output Format:
Compute the min along axis 1 and then print the max of that result.
Sample Input:
4 2
2 5
3 7
1 3
4 0
3
Explanation:The min along axis 1 = [2, 3, 1, 0]
The max of [2, 3, 1, 0] = 3
Solution:
import numpy as np
N, M = map(int,input().split())
arr = np.array([input().split() for _ in range(N)],int)
print(np.max(np.min(arr,axis=1)))
No comments:
Post a Comment