linalg.det:
The linalg.det tool computes the determinant of an array.
print numpy.linalg.det([[1 , 2], [2, 1]]) #Output : -3.0
linalg.eig:
vals, vecs = numpy.linalg.eig([[1 , 2], [2, 1]])
print vals #Output : [ 3. -1.]
print vecs #Output : [[ 0.70710678 -0.70710678]
# [ 0.70710678 0.70710678]]
linalg.inv:
The linalg.inv tool computes the (multiplicative) inverse of a matrix.
print numpy.linalg.inv([[1 , 2], [2, 1]]) #Output : [[-0.33333333 0.66666667]
# [ 0.66666667 -0.33333333]]
Task:
You are given a square matrix A with dimensions N x N. Your task is to find the determinant. Note: Round the answer to 2 places after the decimal.
Input Format:
The first line contains the integer N.
The next N lines contains the N space separated elements of array A.
Output Format:
Print the determinant of A.
Sample Input:
2
1.1 1.1
1.1 1.1
Sample Output:
0.0
Solution:
import numpy
ip = [[1.1,1.1],[1.1,1.1]]
n = int(input())
arr = numpy.array([list(map(float,input().split())) for _ in range(n)])
print(round(numpy.linalg.det(arr),2))
Disclaimer: The problem statement is given by hackerrank.com but the solution is generated by the Geek4Tutorial admin. If there is any concern regarding this post or website, please contact us using the contact form. Thank you!
No comments:
Post a Comment